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Abstract. In the development of satellite systems, rigorous validation of 

constituent subsystems is imperative. Among the various subsystems that 

compose a satellite, the Attitude Determination and Control Sys- tem 

(ADCS) plays a crucial role in maintaining satellite orientation and stability. 

The validation process for these subsystems traditionally employs test 

benches capable of simulating space environment conditions. However, 

simulating such an environment presents numerous challenges, a significant 

one being the imbalance caused by the discrepancy between the satellite’s 

center of mass and its geometric center, which can substantially affect test 

conditions and results. This work presents a simplified design of a single-

axis balancing system for a 1U CubeSat ADCS testbed. The system utilizes 

a fuzzy controller designed to operate a sliding mass, which corrects internal 

system perturbations for the initial configurations of satellite tests. 
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1 Introduction 

Attitude Determination and Control System (ADCS) is a critical subsystem 

responsible for managing a satellite’s orientation in space. It plays a crucial role 

in ensuring the success of space missions. The ADCS performs several vital 

functions, such as orienting solar panels to maximize energy collection, aligning 

satellite antennas with ground stations to facilitate communication, and directing 

scientific instruments towards specific celestial bodies or regions of interest. In the 

context of CubeSats, a class of small satellites, the implementation of ADCS 
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varies. While not all CubeSats incorporate an ADCS, the majority do include 

this subsystem, with only a few exceptions. The decision to include an ADCS 

in a CubeSat depends on the specific mission objectives, power constraints, and 

complexity of the satellite. 

1.1 Verification of Attitude Determination and Control Systems of CubeSats 

Satellite orientation and stability control systems require rigorous testing before 

deployment. To address this problem, advanced testing equipment has been created 

that simulates the conditions in space [13, 15, 17, 19, 24].These platforms, integrate 

various mechanical, electrical, and control components to recreate the challenges a 

satellite will face in space. The primary function of these testbeds is to evaluate 

the effectiveness of a satellite’s ADCS. By simulating space conditions, these 

platforms enable to: 

1. Assess the ADCS performance, 

2. Detect potential malfunctions, 

3. Implement necessary adjustments. 

This process is crucial for ensuring the satellite’s proper functioning once in 

orbit. For CubeSats test benches these typically incorporate three key 

elements  [14]: 

 An air bearing system for frictionless rotation, 

 A mechanism to generate simulated disturbances, 

 A Helmholtz cage for magnetic field simulation. 

The versatility of these test benches allows for a range of verification procedures. 

These are generally categorized into two main types of testing: 

– Hardware-in-the-Loop (HIL) Test: Evaluates real hardware components 

in a simulated environment, combining physical and virtual elements to test 

system performance under realistic conditions [1, 21, 23]. 

– Software-in-the-Loop (SIL) Test: Assesses control algorithms in a fully 

virtual environment, allowing for rapid iteration and debugging of software 

without physical hardware constraints [6, 7, 10]. 

One of the inherent challenges in developing testbeds for ADCS systems is 

balancing the testbed itself, as discussed in [4]. The testbed must initially perform 

a balancing procedure to establish the initial test conditions. While various 

solutions have been proposed in the literature, the most widely accepted method 

is manual balancing [9, 12, 20]. However, this approach is inherently susceptible to 

multiple human-related issues. 
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1.2 Fuzzy Control 

Fuzzy control, based on fuzzy logic introduced by Zadeh in 1965 [27], is a control 

and decision-making approach that allows working with imprecise and vague 

information, similar to human reasoning.  

This approach is fundamental in situations where strict data precision is not 

possible or necessary, and a more flexible and adaptable interpretation of 

information is required. Fuzzy sets employ membership functions that assign a 

degree of membership (usually between 0 and 1) to each element of the set, 

allowing for the representation of vague or imprecise concepts [16 , 26]. 

Unlike conventional control methods, fuzzy control does not require a precise 

mathematical model of the system, making it particularly useful for nonlinear 

systems with a high degree of uncertainty [18, 22].  

This approach allows for the incorporation of expert knowledge in the form of 

linguistic rules, facilitating the implementation of control strategies based on 

human experience. Furthermore, fuzzy control can efficiently manage multiple 

input and output variables, making it suitable for complex multivariable  systems. 

In the context of satellite test systems, specifically for ADCS, fuzzy control 

offers significant advantages, as demonstrated in [3, 5, 8]. The nonlinear nature of 

the balancing system (as shown in [4]), coupled with the need to handle multiple 

variables such as inclination angle and angular velocity, makes fuzzy control an 

attractive option.  

The ability to incorporate expert knowledge about system behavior can lead 

to more robust and adaptable control. 

Compared to classical control methods like PID, fuzzy control can offer better 

performance in nonlinear systems and may be easier to adjust in situations where 

the exact mathematical model of the system is difficult to obtain or changes over 

time. It is worth noting that the combination of classical controllers such as PID 

and fuzzy controllers has been extensively studied, as shown in the literature 

[2, 11, 25]. 

2 Fuzzy C ontroller 

The following section presents a conceptual model that closely approximates a 

real ADCS testbed, addressing the single-axis balancing problems described in 

Section 1.1. This model serves as a foundation for understanding and analyzing 

the dynamics of the system in a controlled environment. 

2.1 Description of the system 

The system used to study mass balancing systems in ADCS testbeds is shown 

in Figure 1. 
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Fig. 1. A frontal view of the system with a 1U CubeSat mounted. 

 

Fig. 2. Exploded view of the system. 

It is important to note that while this design deviates from the characteristic 

configuration of manual balancing systems for verification purposes, it retains 

similar functional attributes.  

Specifically, it incorporates a mass that traverses beneath the satellite, aiding 

in the compensation of the discrepancy between the center of mass and the 

geometric center of the CubeSat.  

At this stage, it should be observed that low-friction environmental 

conditions have not been incorporated into the model. Figure 2 presents an 

exploded view of the system, offering a comprehensive visualization of all 

constituent components. 
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Table 1. System Components (see Figure 2) 

Component Function Technical Specification 

Lead Screw Displaces the mass to correct centre of 

mass 

M5-0.8×100 worm screw 

Motor Actuates the corrective mass Pololu Micro Metal Gearmotor MP 

6V with 12 CPR Encoder 298:1 

Sliding Mass 31.46g corrective mass Galvanised steel 

Encoder Measures system inclination via ro- 

tational displacement at the base pivot 

5000-pulse incremental mag- 

netic encoder 

 

Table 2. Signals of the fuzzy system. 

Name Type Description 

Inclination Angle (θ) 

 

 

Angular Velocity
  

θ˙
 
 

 

 

Mass Displacement (µ1) 

Input 

 

 

Input  

 

 

Output 

Represents the beam’s inclination relative to an 

inertial frame located at the system’s pivot, 

measured by an incremental encoder 

Rate of change of the inclination angle with 

respect to time t 

Required displacement to generate a balancing 

torque for the system 

 
Fig. 3. System without CubeSat. 
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Furthermore, Table 1 provides a detailed description of the most salient 

components, highlighting their roles and significance within the overall system 

architecture. Given the encoder specifications described in Table 1, the system 

achieves an angular resolution of 0.072°.  

Additionally, the maximum displacement velocity of the mass, determined by 

the worm screw and motor characteristics, is approximately 0.001467 m/s. For 

the purposes of this study, Figure 3 shows the essential elements crucial to the 

design of the fuzzy  controller. 

Table 3. Sets for the error variable. 

Inclination Angle [degrees]                Set 

-90 to -0.5 Very Low Error (V LE) 

-1 to 0 Low Error (LE) 

-0.5 to 0.5 Zero Error (ZE) 

0 to 1 High Error (HE) 

0.5 to 90 Very High Error (V HE) 

Table 4. Sets for the angular velocity variable. 

Angular velocity [degrees/sec]         Set 

-2 to 0 

-0.5 to 0.5 

0 to 2 

 Low Velocity (LV ) 

Zero Velocity (ZV ) 

High Velocity (HV ) 

Table 5. Sets for the mass displacement variable. 

Displacement [meters] Set 

-0.05 to -0.01 Very Low Position (VLP) 

-0.02 to 0 Low Position (LP) 

-0.01 to 0.01 Zero Position (ZP) 

0 to 0.02 High Position (HP) 

0.01 to 0.05 Very High Position (VHP) 

Table 6. Control Rule Matrix. 

  Angular Velocity 

HV ZV LV 

 VLE HP VHP VHP 

 LE HP HP VHP 

Error ZE LP ZP HP 

 HE LP LP VLP 

 VHE LP VLP VLP 
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Fig. 4. Membership function of the error variable. 

 

 
 

Fig. 5. Membership function of the angular velocity variable. 

 

Fig. 6. Membership function of the mass displacement variable. 

 

Fig. 7. System model and fuzzy control. 
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2.2 Fuzzy Control Design 

The following section details the design of the fuzzy control system for the setup 

showed in Figure 1.  

2.3 Linguistic Variables of the System 

Table 2 presents the linguistic variables of the system, along with a concise 

description of their role within the fuzzy controller. 
 

2.4 Functional Description of the System 

The following presents a brief and simplified functional description (See Table 6 

to observe the control behavior) of the system: 

If the system’s inclination is very high and this inclination is rapid, the mass 

displacement is high. If the system’s inclination is very high and this inclination 

is slow, the mass displacement is low. If the system’s inclination is very high and 

the velocity is zero, the mass displacement is low. If the system’s inclination is very 

low and the velocity is very high, the displacement is high. 

2.5 Definition of the Sets 

The error variable is derived from the incremental encoder located at the system’s 

pivot. For this linguistic variable, the universe of discourse is defined from -90° 

to 90°, and the sets are represented in Table 3. 

The selection of sets for the angular velocity variable follows a similar approach to 

the previous set. However, it is described by the angular velocity in degrees per 

second, as shown in Table 4. 

Finally, Table 5 describes the set for the mass displacement variable, which 

is defined by the dimensions of the lead screw. 

2.6 Control Rule Sets 

The control rules are entirely dependent on the experience of the control system 

designer. Due to the number of variables, a two-dimensional matrix is generated, 

derived from the functional description of the system. Given the behavior of the 

system’s linguistic variables, it is possible to describe the fuzzy control through the 

matrix in Table 6. 

Based on the control matrix, the following structure is used for the propositions: 

IF premise 1 AND premise 2 THEN consequent. 

Here the consequent is the output variable (mass displacement variable). Below 

are all the compound propositions of the system: 

If E = V LE and V = HV then P = HP 

If E = V LE and V = ZV then P = V HP 

If E = V LE and V = LV then P = V HP 
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If E = LE and V = HV then P = HP 

If E = LE and V = ZV then P = HP 

If E = LE and V = LV then P = V HP 

If E = ZE and V = HV then P = LP 

If E = ZE and V = ZV then P = ZP 

If E = ZE and V = LV then P = HP 

If E = HE and V = HV then P = LP 

If E = HE and V = ZV then P = LP 

If E = HE and V = LV then P = V LP 

If E = V HE and V = HV then P = LP 

If E = V HE and V = ZV then P = V LP 

If E = V HE and V = LV then P = V LP 

2.7 Membership Functions 

Finally, the following membership functions are established for each set of 

linguistic variables in the system. Figure 4 shows the membership function 

corresponding to the error variable. 

This distribution for the membership functions was constructed based on the 

operating ranges shown in the literature [9, 12, 20]. Note that the system’s 

efficiency may vary depending on the type of function; this will be addressed in 

depth in the conclusions of this work. For the membership function of the angular 

velocity, only three velocities will be considered. Efficient results were shown in 

the simulations presented in Section 2.3 within the context of this work. Lastly, 

due to the dimensions of the mobile bar and the moment-generating mass, the 

following membership function is established (see Figure 6).  

2.8 Simulations 

The fuzzy controller is validated through numerical simulation using Matlab ® 

Simulink tool, version R2023b. The Simulink model of the fuzzy controller is 

shown in Figure 7. 

The system response under these conditions is shown in the graph in Figure 

8.  Finally, the corresponding modification is made in the Simulink model to obtain 

the system’s response to an initial condition of 2° and its response to a reference of 

0°, which is showed in Figure 9. 

3 Results and Conclusions 

The fuzzy controller, as shown in Figure 8, was subjected to tracking two references 

(the same ones illustrated in the Simulink model in Figure 7). To reach the position 

of 0.1° inclination, the system achieved its settling time in approximately 1 second, 

and exhibited an overshoot of 0.024° for the 0.1° reference. 
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On the other hand, to reach the 0° position starting from a 0.1° deviation, the 

settling time is achieved in approximately 1.2 seconds with an almost imperceptible 

overshoot of 0.001°. Finally, the case closest to the real application was presented, 

which starts from a system with a 2° deviation (see Figure 9). In this case, a settling 

time of 3.4 seconds was observed, and an overshoot above the 0° reference level of 

approximately 1.5°, which, although significantly large, does not affect the 

model’s  objectives. 

The fuzzy control system was successfully designed for a single axis to balance an 

ADCS test system. This design effectively addresses the issues arising from human 

manipulation and calibration inherent in all manual systems presented in the literature. 

While not optimal, the performance metrics of the controller are sufficient to meet the 

requirements for balancing systems in ADCS testbed, considering the scope of this 

work. The system’s linguistic variables, their sets, and membership functions were 

defined, along with the control rules. This approach allows for the incorporation of 

expert knowledge and the handling of system nonlinearities. Future work could 

 

Fig. 8. Response of the fuzzy controller to references of 0.1° and 0°. 

 
Fig. 9. Response of the fuzzy controller to reference of 0°. 
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explore the optimization of the fuzzy controller using techniques such as genetic 

algorithms to further enhance its performance. Additionally, we could consider 

systems with a greater number of membership functions or different geometries 

(e.g., sigmoidal) to potentially enhance system performance. However, it is 

important to avoid too many functions near 0° to prevent exceeding the capabilities 

of the selected encoder. These improvements might help reduce the overshoot and 

settling time, potentially leading to better system performance. 
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